21,470 research outputs found

    Reinforced structural plastics

    Get PDF
    Reinforced polyimide structures are described. Reinforcing materials are impregnated with a suspension of polyimide prepolymer and bonded together by heat and pressure to form a cured, hard-reinforced, polyimide structure

    New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability

    Get PDF
    Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights

    A Survey for Outer Satellites of Mars: Limits to Completeness

    Full text link
    We surveyed the Hill sphere of Mars for irregular satellites. Our search covered nearly the entire Hill Sphere, but scattered light from Mars excluded the inner few arcminutes where the satellites Phobos and Deimos reside. No new satellites were found to an apparent limiting red magnitude of 23.5, which corresponds to radii of about 0.09 km using an albedo of 0.07.Comment: 5 figures (1 color), 2 Tables, to appear in AJ Nov. 200

    The Arecibo Galaxy Environments survey IV: the NGC7448 region and the HI mass function

    Full text link
    In this paper we describe results from the Arecibo Galaxy Environments Survey (AGES). The survey reaches column densities of ~3x10^18 cm^-2 and masses of ~10^7 M_O, over individual regions of order 10 sq deg in size, out to a maximum velocity of 18,000 km s^-1. Each surveyed region is centred on a nearby galaxy, group or cluster, in this instance the NGC7448 group. Galaxy interactions in the NGC7448 group reveal themselves through the identification of tidal tails and bridges. We find ~2.5 times more atomic gas in the inter-galactic medium than in the group galaxies. We identify five new dwarf galaxies, two of which appear to be members of the NGC7448 group. This is too few, by roughly an order of magnitude, dwarf galaxies to reconcile observation with theoretical predictions of galaxy formation models. If they had observed this region of sky previous wide area blind HI surveys, HIPASS and ALFALFA, would have detected only 5% and 43% respectively of the galaxies we detect, missing a large fraction of the atomic gas in this volume. We combine the data from this paper with that from our other AGES papers (370 galaxies) to derive a HI mass function with the following Schechter function parameters alpha=-1.52+/-0.05, M^*=5.1+/-0.3x10^9 h_72^-2 M_O, phi=8.6+/-1.1x10-3 h_72^3 Mpc^-3 dex-1. Integrating the mass function leads to a cosmic mass density of atomic hydrogen of Omega_HI=5.3+/-0.8x10^-4 h_72^-1. Our mass function is steeper than that found by both HIPASS and ALFALFA (alpha=1.37 and 1.33 respectively), while our cosmic mass density is consistent with ALFALFA, but 1.7 times larger than found by HIPASS

    Astrometry of OH/IR stars using 1612 MHz hydroxyl masers. I. Annual parallaxes of WX Psc and OH138.0+7.2

    Full text link
    We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. We obtained a 3-sigma upper limit of <=5.3 mas on the parallax of WX Psc, corresponding to a lower limit distance estimate of >~190 pc. The obtained parallax of OH138.0+7.2 is 0.52+/-0.09 mas (+/-18%), corresponding to a distance of 1.9(+0.4,-0.3) kpc, making this the first hydroxyl maser parallax below one milliarcsecond. We also introduce a new method of error analysis for detecting systematic errors in the astrometry. Finally, we compare our trigonometric distances to published phase-lag distances toward these stars and find a good agreement between the two methods.Comment: Preprint, accepted for publication in The Astronomical Journal (January 17, 2017

    Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    Get PDF
    Urease activity in soil is persistent for long periods under low water, low temperature, and sterile regimes, and it was suggested that some form of enzyme-protective mechanism exists in soil. Dublin soil was extracted by sonication in water followed by adding a mixture of salts. Urease activity is associated with the organo-mineral complex thus obtained and is resistant to the activities of proteolytic enzymes. Clay free soil organic matter prepared subsequently by filtration also exhibits urease activity which is resistant to proteolysis. Models consisting of enzymes with bentonite and lignin were found to mimic this resistance to proteolysis. A model system is presented which suggests both the origin and location of soil ureases and a reason for their persistence in nature

    Co-Cultures of Oophila Amblystomatis Between Ambystoma Maculatum and Ambystoma Gracile Hosts Show Host-Symbiont Fidelity

    Get PDF
    A unique symbiosis occurs between embryos of the spotted salamander (Ambystoma maculatum) and a green alga (Oophila amblystomatis). Unlike most vertebrate host-symbiont relationships, which are ectosymbiotic, A. maculatum exhibits both an ecto- and an endo-symbiosis, where some of the green algal cells living inside egg capsules enter embryonic tissues as well as individual salamander cells. Past research has consistently categorized this symbiosis as a mutualism, making this the first example of a “beneficial” microbe entering vertebrate cells. Another closely related species of salamander, Ambystoma gracile, also harbors beneficial Oophila algae in its egg capsules. However, our sampling within the A. gracile range consistently shows this to be a strict ectosymbiotic interaction—with no sign of tissue or presumably cellular entry. In this study we swapped cultured algae derived from intracapsular fluid of different salamander hosts to test the fidelity of tissue entry in these symbioses. Both A. maculatum and A. gracile embryos were raised in cultures with their own algae or algae cultured from the other host. Under these in vitro culture conditions A. maculatum algae will enter embryonic A. maculatum tissues. Additionally, although at a much lower frequency, A. gracile derived algae will also enter A. maculatum host tissues. However, neither Oophila strain enters A. gracile hosts in these co-culture conditions. These data reveal a potential host-symbiont fidelity that allows the unique endosymbiosis to occur in A. maculatum, but not in A. gracile. However, preliminary trials in our study found that persistent endogenous A. maculatum algae, as opposed to the cultured algae used in subsequent trials, enters host tissues at a higher frequency. An analysis of previously published Oophila transcriptomes revealed dramatic differences in gene expression between cultured and intracapsular Oophila. These include a suite of genes in protein and cell wall synthesis, photosynthesis, central carbon metabolism suggesting the intracapsular algae are assimilating ammonia for nitrogen metabolism and may be undergoing a life-cycle transition. Further refinements of these co-culture conditions could help determine physiological differences between cultured and endogenous algae, as well as rate-limiting cues provided for the alga by the salamander
    corecore